Measurement Conversion Chart

ISO Metric Coarse	mm	Inch	Screw Guage
	2.84		4
<u>M3</u>	3.00		
	3.18	1/8"	5
	3.51		6
	3.90	5/32"	7
<u>M4</u>	4.00		
	4.17		8
	4.50		9
	4.76	3/16"	10
M5	5.00		
	5.49		12
M6	6.00		
	6.35	1/4"	14
	7.94	5/16"	
M8	8.00		
	9.53	3/8"	
M10	10.00		
	11.11	7/16"	
M12	12.00		
	12.70	1/2"	
	14.29	9/16"	
	15.88	5/8"	
M16	16.00		
	19.06	3/4"	
M20	20.00		
	22.23	7/8"	
M24	24.00		

CATEGORY 19 | Technical Information

Which Fastener to Use

For fixing	Use one of the following			
Timber to Timber	surefast screws, twinfast screws, wood screws, coach screws, coach bolts			
	and nuts, Type 17 screws or nails			
Timber to Metal	wingtek screws, self tapping screws, decking screws			
Metal to Timber	hex head bolt and nuts, coach screws, coach bolts and nuts, surefast screws			
Metal to Metal	hex bolt and nuts, self tapping screws, self drilling screws, tek screws,			
	rivets, metal thread screws			
Into plasterboard (hollow wall)	plasterboard screws, legs wall anchors, spring toggles, hollow wall anchors,			
	poly toggles			
Into solid block, concrete, etc.	sleeve anchors, through bolts, screw bolts, nylon plugs, chemical anchors,			
	nail in anchors, spikes			
Into hollow block, brick, etc.	screw bolts, nylon plugs, metal pin anchors, spikes, chemical anchors			

Most of the above applications will require pre-drilling the hole

Head Types

Hexagon Head

Normally referred to as hexagon or hex. Note the small washer face under the head.

Hexagon Washer head Note the large flange under the head.

Full Bearing hexagon

This will also be referred to as hexagon or hex. There is no washer face under the head.

Cup Square head

A shallow round head. The head shape is drawn here with a square under the neck, as typically found on Coach Bolts.

Countersunk Head

Found on Bolt ,screw and socket recess products.

Raised Countersunk Head

Found on Bolt and screw products. Bolts normally also have a square under the head, creating a form of plow bolt. In screws this head is often called oval.

Cap Head

The standard head shape of the range of socket head cap screws.

Button Head

Normally only found in standard fasteners in the socket recess range.

Head Types

Round Head

A deeper head than cup head. In standard fasteners this shape is found mainly on woodscrews and imperial metal thread products.

Pan Head

Major products featuring this head shape are self tappers and metal threads. Note: that the head is shallower than the round head.

Mushroom Head

Another head shape from the screw product range. Note the head diameter is larger and the head is thinner than pan or round heads. Gutter bolts have this shape head.

Cheese Head

A head shape from the screw product range, normally on metal threads.

Bugle Head

This head shape is normally only used on screw products, particularly fasteners used to screw plasterboard to steel or timber.

Flower Head

Reaming cutters formed around the edge of the head allow the screw to self embed in cement, steel and timber products.

Wafer Head

Another head shape used mainly on screws for the building industry. Most commonly, the head is found on self drillers.

Drive Types

External Hexagon

The most common type, and found on many bolt and screw products.

Internal Hexagon

Usually found on products referred to as socket head cap screws, socket set screws and similar assosiated products. Driven by hexagon key.

Slotted

Found on standard woodscrews, metal threads and self tappers. Driven by a conventional bladed screwdriver.

Phillips Recess

A form of cross recess. Driven by Philips screwdriver.

Pozi Drive Recess

The most common of cross recesses, often available on screw products. Driven by Pozi drive screwdriver.

Combination Recess/Slot

This drive, consisting of a cross recess and a slot is found on some standard screws. Driven with either a cross recess or blade screwdriver.

Drive Types

Torx Recess

A six sided recess which features curved driving faces. The most commonly found on high volume screw items in automobile or electrical appliances. Special driving tools are required.

Square

This drive consists of a square shaped recess punched into the head of a screw, driven by square head screwdriver.

Security

Tri Wing

A recess drive, with three rather than four driving arms. This drive is found on screws in electrical appliances to prevent disassembly by unauthorised persons.

Post Hexagon

Anti theft drives used to avoid the unauthorised disassembly of a component. These drives take different forms and all require specialised driving tools.

One Way

This drive utilises a standard bladed screwdriver for tightening. The fastener cannot be undone because the driving faces in the reverse direction are not formed.

Snake Eyes

The head of the fastener has two holes which provide the driving feature.

Screw Point Types

Type AB

Type B

This point is found on Type AB self tapping screws and a range of screws used for fastening timber or timber based building products. Its purpose is to assist the screw in engaging in the material being fastened.

ATTA A

This point is applied to self tapping screws and generally specified where the screw is being driven into a shallow hole. Type B points provide for more full threads to be engaged in the material being fastened.

Type 17

Similar to type AB point, except that screw material has been cut away. This feature, sometimes called a shank shot provides the ability for the screw to self drill through thin metal and then drill into timber members of the structure.

Type 25

A point designed to cut through threads in plastic material . The presence of the shank slot provides the cutting ability and also for the clearance of cutting chips.

Screw Point Types

the

Needle Point

Suitable for use in situations where fasteners are required to pierce light metals. This point can be used in light metal joining or where there is a need to fix plasterboard to light steel structural members.

Type 23

Fasteners with this thread cutting point are designed for use in soft metals or die castings. Threads produced belong to the machine thread series.

Drill

A point designed to fasten material of varying types to steel. The shape of the drill point gives the fastener the ability to drill its own hole in most materials including steel.

Winged Drill

In thicker building materials such as plyboard, hardboard or cement sheet, the addition of wings cuts a slightly oversize hole permitting clear passage of the thread to engage with supporting steel structural members.

Thread Forming Point (Triobular or Taptite)

These screws produce threads by moving material rather than cutting it away. In addition to the point form, where the shape of the thread is progressively developed, the shank of the screw takes the form of a rounded triangle. The point and the shank form provide the ability to produce the thread.

Stainless Steel

Chemical Composition as Percentage

Grade	C	Mn	Р	S	Si	Cr	Ni	Мо
304	.08 max	2.0	0.045	0.030	1.0 max	18.0 to 20.0	8.0 to 10.5	—
316	.03 max	2.0	0.045	0.030	1.0 max	16.0 to 18.0	8.0 to 14.0	2.0 to 3.0

Stainless Steel Grades	Suitable Alloys	
A2	302, 304, 304L, 321, 347	
A4	316, 316L, (317, 317L)	

Note: The above chart shows suitable stainless steel alloys for the individual stainless steel grade. The manufacturer, however, has the option to use other stainless steels, provided they meet the ISO requirement.

Galvanic Series

High	Metals most likely to corrode	
A	Zinc and Galvanised	
	Aluminium	
	Lead	
	Tin	
	Brass	
	Copper	
	Bronze	
	Monel	
	Nickel	
	Stainless 304	
. ♥	Stainless 316	
Low	Metals least likely to corrode	

E T T **Product Dimensions** (20 3) B 6 3 E Metric Hexagon Head Bolts To AS1110 C - A A Across Flats Across Head Shank Pitch **Corners** Height Diameter Max Dia Max Max 0.8 8 7.78 9.2 3.5 5 4.82 M5 10 9.78 4 6 11.5 5.82 M6 1 1.25 8 **M8** 13 12.73 15 5.3 7.78 M10 1.5 16 15.73 18.4 6.4 10 9.78 17.73 M12 1.75 18 20.7 7.5 12 11.73 20.67 24.2 8.8 14 M14 2 21 13.73 2 24 23.67 27.7 10 16 15.73 M16 2.5 27 26.67 18 M18 31.2 11.5 17.73 2.5 30 29.67 34.6 12.5 20 19.67 M20 2.5 34 33.38 39.3 14 22 21.67 M22 M24 3 36 35.38 41.6 15 24 23.67 3 16.7 27 26.67 M27 41 40.38 47.3 45 M30 3.5 46 53.1 18.7 30 29.67 49 57.7 M33 3.5 50 20.5 33 32.61 M36 4 55 53.8 63.5 22.5 36 35.61 Nominal Thread Lengths for Hexagon Bolts Thread Length (T)

Nominal Length of Bolt	- Up to 25mm	Thread = $2D + 6mm$
	- Over 125mm, up to 200mm	Thread = $2D + 12mm$
	- Over 200mm	Thread = $2D + 25mm$
		where D is the Diameter

Prod Imperial H	luct D exagon Head	Bolts To AS	sions 2465			r+ T - <u>i</u> i D ↓ F				
	Pit	ch	A Ac	ross	B Ac	ross	C He	ead	E Sh	ank
	TI	ין	Fla	its	Corr	ners	Hei	ght	Diam	eter
Dia	UNC	UNF	Max	Min	Max	Min	Max	Min	Max	Min
1/4"	20	28	0.438	0.428	0.505	0.488	0.163	0.15	0.25	0.245
5/16"	18	24	0.5	0.489	0.577	0.557	0.211	0.195	0.313	0.306
3/8"	16	24	0.562	0.551	0.65	0.628	0.234	0.226	0.375	0.369
7/16"	14	20	0.625	0.612	0.722	0.698	0.291	0.272	0.438	0.43
1/2"	13	20	0.75	0.736	0.866	0.84	0.323	0.302	0.5	0.493
9/16"	12	18	0.812	0.798	0.938	0.91	0.371	0.348	0.563	0.554
5/8"	11	18	0.938	0.922	1.083	1.051	0.403	0.378	0.625	0.617
3/4"	10	16	1.125	1.100	1.299	1.254	0.483	0.455	0.75	0.741
7/8"	9	14	1.312	1.285	1.516	1.465	0.563	0.531	0.875	0.866
1"	8	12	1.5	1.469	1.732	1.675	0.627	0.591	1	0.99
1.1/8"	7	12	1.688	1.631	1.949	1.859	0.718	0.658	1.125	1.114
1.1/4"	7	12	1.875	1.812	2.165	2.066	0.813	0.749	1.25	1.239
1.3/8"	6	12	2.062	1.994	2.382	2.273	0.878	0.81	1.375	1.363
1.1/2"	6	12	2.25	2.175	2.598	2.48	0.974	0.902	1.5	1.488
1.3/4"	5		2.625	2.538	3.031	2.893	1.134	1.054	1.75	1.738
2"	4.5		3	2.9	3.464	3.306	1.263	1.175	2	1.988
Nomina	al Threa	d Length	is for He	xagon B	olts			Thread I	_ength (1	[)
Nomina	l Length o	f Bolt	- Up to 6"	1				Thread =	2D + 1/4"	
			- Over 6"					Thread =	2D + 1/2"	
								where D i	s the Diam	eter

Metric Hexagon Nuts to AS 1112

		Across Flats		Across Corners	Thickness		
Size	Pitch	Мах	Min	Min	Max	Min	
M5	0.8	8	7.78	8.79	4.7	4.4	
M6	1	10	9.78	11.05	5.2	4.9	
M8	1.25	13	12.73	14.38	6.8	6.4	
M10	1.5	16	15.73	17.77	8.4	8.0	
M12	1.75	18	17.73	20.03	10.8	10.4	
M16	2	24	23.67	26.75	14.8	14.1	
M20	3	30	29.16	32.95	18	16.9	
M24	3	36	35	39.55	21.5	20.2	
M27	3	41	40	45.2	23.8	22.5	
M30	4	46	45	50.85	25.6	24.3	
M33	4	50	49	55.37	28.7	27.4	
M36	4	55	53.8	60.79	31.0	29.4	

Imperial Hexagon Nuts to AS 2465

	TI	PI	Across	s Flats	Across Corners		Thick	ness
Dia	UNC	UNF	Мах	Min	Max	Min	Max	Min
1/4"	20	28	0.438	0.428	0.505	0.488	0.226	0.212
5/16"	18	24	0.5	0.489	0.577	0.557	0.273	0.258
3/8"	16	24	0.562	0.551	0.65	0.628	0.337	0.32
7/16"	14	20	0.688	0.675	0.794	0.768	0.385	0.365
1/2"	13	20	0.75	0.736	0.866	0.84	0.448	0.427
9/16"	12	18	0.875	0.861	1.01	0.982	0.496	0.473
5/8"	11	18	0.938	0.922	1.083	1.051	0.559	0.535
3/4"	10	16	1.125	1.088	1.299	1.24	0.665	0.617
7/8"	9	14	1.312	1.269	1.516	1.447	0.776	0.724
<u>1"</u>	8	12	1.5	1.45	1.732	1.653	0.887	0.831
1.1/8"	7	12	1.688	1.631	1.949	1.859	0.999	0.939
<u>1.1/4"</u>	7	12	1.875	1.812	2.165	2.066	1.094	1.03
1.3/8"	6	12	2.062	1.994	2.382	2.273	1.206	1.138
1.1/2"	6	12	2.25	2.175	2.598	2.48	1,371	1.245
1.3/4"	5		2.625	2.565	3.031	2.893	1.53	1.47
2"	4.5		3	2.94	3.464	3.306	1.754	1.684

Product Dimensions

Metric Nyloc Nuts Din 985

		Acros	s Flats	Across Corners		Nut Height	Thread
Size	Pitch	Мах	Min	Max	Min	Мах	Height Min
M4	0.7	7	6.78	8.1	7.66	-	-
M5	0.8	8	7.78	9.2	8.79	-	-
M6	1	10	9.78	11.5	11.05	6	4
M8	1.3	13	12.73	15	14.38	8	5.5
M10	1.5	16	15.57	18.47	17.77	10	6.5
M12	1.8	18	17.57	20.77	20.03	12	8
M14	2	21	20.16	24.24	22.78	14	9.5
M16	2	24	23.67	27.70	26.75	16	10.5
M18	2.5	27	26.16	31.16	29.55	18	13
M20	2.5	30	29.16	34.6	32.95	20	14
M22	2.5	34	33	39.24	35.28	22	15
M24	3	36	35	41.60	39.55	34	15
M27	3	41	40	47.32	45.19	27	17
M30	3.5	46	45	53.1	50.85	30	19
M33	3.5	50	49	57.7	55.36	33	22
M36	4	55	53.8	63.5	60.79	36	26

Imperial Nyloc Nuts

					Across			Hex
	Т	PI	Acros	s Flats	Corners	Thick	kness	Height
Dia	UNC	UNF	Max	Min	Min	Мах	Min	Min
3/16"	24	32	0.376	0.367	0.41	0.249	0.229	0.14
1/4"	20	28	0.439	0.43	0.482	0.328	0.298	0.225
5/16"	18	24	0.502	0.492	0.552	0.359	0.329	0.25
3/8"	16	24	0.564	0.553	0.622	0.468	0.438	0.335
7/16"	14	20	0.627	0.616	0.698	0.468	0.438	0.324
1/2"	13	20	0.752	0.741	0.837	0.609	0.579	0.464
9/16"	12	18	0.87	0.865	0.978	0.656	0.626	0.469
5/8"	11	18	0.94	0.928	1.051	0.765	0.735	0.593
3/4"	10	16	1.064	1.052	1.191	0.89	0.86	0.742
7/8"	9	14	1.252	1.239	1.403	0.999	0.969	0.79
<u>1"</u>	8	12	1.44	1.427	1.615	1.07	1.016	0.825
1.1/8"	7	12	1.627	1.614	1.826	1.203	1.141	0.93
<u>1.1/4"</u>	7	12	1.815	1.801	1.038	1.422	1.36	1.125
1.3/8"	6	12	2.008	1.973	2.232	1.609	1.547	1.282
1.1/2"	6	12	2.197	2.159	2.444	1.64	1.578	1.313
1.3/4"	5		2.762	2.715	3.035	2.052	2.012	1.689
2"	4.5		3.137	3.075	3.449	2.367	2.317	1.75

Nord-Lock[™] Bolt Securing System

The bolt becomes self locking

A unique bolt securing system using tension instead of friction.

The key is the difference in angles. Here you see what happens when a nut attempts to loosen. The pair of washers expand more than the corresponding pitch of the thread. Nord-Lock washers positively lock the fastener in a joint which is subjected to extreme vibration.

Metric Hexagon Commercial Bolts and Set Screws to AS 1111 Class 4.6

				Across				
Size	Pitch	Head	Height	Across Flats		Corners	Shan	k Dia
		Max	Min	Мах	Min	Min	Max	Min
M6	1.00	4.38	3.62	10.00	9.64	10.89	6.48	5.52
M8	1.25	5.68	4.92	13.00	12.57	14.20	8.58	7.42
M10	1.50	6.85	5.95	16.00	15.57	17.59	10.58	9.42
M12	1.75	7.95	7.05	18.00	17.57	19.85	12.70	11.30
M14	2.00	9.25	8.35	21.00	20.16	22.78	14.70	13.30
M16	2.00	10.75	9.25	24.00	23.16	26.17	16.70	15.30
M18	2.50	12.40	10.60	27.00	26.16	29.55	18.70	17.30
M20	2.50	13.40	11.60	30.00	29.16	32.95	20.84	19.16
M22	2.50	14.90	13.10	34.00	33.00	37.28	22.84	21.16
M24	3.00	15.90	14.10	36.00	35.00	39.55	24.84	23.16
M27	3.00	17.60	15.80	41.00	40.00	45.19	27.84	26.16
M30	3.50	19.75	17.65	46.00	45.00	50.85	30.84	29.16
M33	3.50	21.55	19.45	50.00	49.00	55.36	34.00	32.00
M36	4.00	23.55	21.45	55.00	53.80	60.79	37.00	35.00

Through Bolts

All dimensions in mm

	Hole Diameter	Hole Depth	Fastens Material Up To
Description	mm	mm	mm
12 x 80	12	60	5
12 x 100	12	60	25
12 x 135	12	80	40
16 x 105	16	80	5
16 x 125	16	100	10
16 x 140	16	100	25
16 x 180	16	100	65
20 x 120	20	100	5
20 x 160	20	120	20
20 x 200	20	120	60

CATEGORY 19 | Technical Information

Page 233

Screw Bolts

	Hole Depth	Fastens Material Up To
Description	mm	mm
5 x 50mm	5	25
6.5 x 30mm	6.5	5
6.5 x 50mm	6.5	25
6.5 x 75mm	6.5	50
6.5 x 100mm	6.5	75
<u>8 x 50mm</u>	8	15
<u>8 x 75mm</u>	8	40
8 x 100mm	8	65
<u>10 x 60mm</u>	10	20
10 x 75mm	10	35
10 x 100mm	10	60
10 x 120mm	10	80
<u>12 x 75mm</u>	12	25
<u>12 x 100mm</u>	12	50
<u>12 x 150mm</u>	12	100
16 x 100mm	16	35
16 x 150mm	16	85

Hex Head Sleeve Anchors

	Hole Dia	Hole Depth	Fastens Material Up To
Description	mm	mm	mm
6.5 x 20mm	6.5	18	2
6.5 x 25mm	6.5	20	5
6.5 x 35mm	6.5	30	5
6.5 x 55mm	6.5	30	25
6.5 x 75mm	6.5	30	45
8 x 40mm	8	35	5
8 x 65mm	8	35	30
8 x 85mm	8	35	50
10 x 40mm	10	35	5
10 x 50mm	10	40	10
10 x 60mm	10	40	20
10 x 75mm	10	40	35
10 x 95mm	10	40	55
10 x 120mm	10	40	80
12 x 60mm	12	50	10
12 x 75mm	12	50	25
12 x 100mm	12	50	50
12 x 130mm	12	50	80
16 x 65mm	16	55	10
16 x 110mm	16	55	55
16 x 145mm	16	55	90
20 x 75mm	20	60	15
20 x 105mm	20	60	45
20 x 150mm	20	60	90

Tightening Torques and Induced Bolt Tensionfor Imperial BoltsTo AS2465 Grade 5

	U	UNC		NF
Dia	Torque ft.lbs	Bolt Tension Ibs	Torque ft.lbs	Bolt Tension Ibs
	_	4 700	0	0.040
1/4"	1	1,760	8	2,010
5/16"	15	2,890	17	3,180
3/8"	27	4,290	30	4,840
7/16"	43	5,880	48	6,560
1/2"	92	11,050	104	12,480
9/16"	133	14,170	149	15,860
5/8"	183	17,610	208	19,950
3/4"	326	26,060	364	29,120
7/8"	525	36,000	579	39,700
<u>1"</u>	787	47,200	862	51,700
1 1/8"	1,116	59,500	1,251	66,700
1 1/4"	1,573	75,500	1,744	83,700
1 3/8"	2,063	90,000	2,349	102,500
1 1/2"	2,738	109,500	3,083	123,300

Tightening Torques and Induced Bolt Tensionfor Metric BoltsTo AS1110 Class 8

Dia	Torque Nm	Bolt Tension kN
<u>M5</u>	5	5.35
<u>M6</u>	9	7.54
<u>M8</u>	22	13.8
<u>M10</u>	44	21.9
<u>M12</u>	77	31.8
<u>M14</u>	112	43.4
<u>M16</u>	190	59.2
<u>M20</u>	372	95.6
<u>M22</u>	519	118
<u>M24</u>	640	138
<u>M30</u>	1,314	219
<u>M36</u>	2,297	319

Tightening Torquesand Induced Bolt Tension forImperial BoltsTo AS2465 Grade 8

	UI	NC	UNF		
Dia	Torque ft.lbs	Bolt Tension Ibs	Torque ft.lbs	Bolt Tension Ibs	
1/2"	92	11,050	104	12,480	
9/16"	133	14,170	149	15,860	
5/8"	183	17,610	208	19,950	
3/4"	326	26,060	364	29,120	
7/8"	525	36,000	579	39,700	
1"	787	47,200	862	51,700	
1 1/8"	1,116	59,500	1,251	66,700	
1 1/4"	1,573	75,500	1,744	83,700	
1 3/8"	2,063	90,000	2,349	102,500	
1 1/2"	2,738	109,500	3,083	123,300	

Proof Loads and Tensile Stress for Metric Hexagon Bolts

Class 4.6 and 8.8 to AS 1110

		Class 4.6	to AS 111	Class 8.8 t	to AS 1110
Dia	Tensile Stress Area mm²	Proof Load kN	Tensile Load kN min	Proof Load kN	Tensile Load kN min
M5	14.2	3 20	5.68	8 23	11 35
M6	20.1	4.52	8.04	11.6	16.1
M8	36.6	8.24	14.6	21.2	29.2
M10	58.0	13.0	23.2	33.7	46.4
M12	84.3	19.0	33.7	48.9	67.4
M14	115	25.9	46.0	66.7	92.0
M16	157	35.3	62.8	91	125
M18	192	43.2	76.8	115	159
M20	245	55.1	98.0	147	203
M22	303	68.2	121	182	252
M24	353	79.4	141	212	293
M27	459	103	184	275	381
M30	561	126	224	337	466
M33	694	156	278	416	576

Proof Loads and Tensile Stress for Metric Hexagon Nuts Class 8.8 to AS 1112

Dia	Tensile Stress Area mm²	Proof Load kN min
M5	14.2	11.4
M6	20.1	16.1
M8	36.6	29.3
M10	58	46.4
M12	84.3	67.4
<u>M14</u>	115	92
<u>M16</u>	157	126
M18	192	176.6
<u>M20</u>	245	225.4
M22	303	278.8
M24	353	324.8
M27	459	422.3
M30	561	516.1
M33	694	638.5
<u>M36</u>	817	751.6

Proof Loads and Tensile Stress for Metric Hexagon Nuts

to AS 24465

		UNC Threads		UNF Threads			
Dia	Tensile Stress Area in²	Grade 5 Proof Load Ibf	Grade 8 Tensile Load Ibf min	Tensile Stress Area in ²	Grade 5 Proof Load Ibf	Grade 8 Tensile Load Ibf min	
1/4"	0.0318	3800	4750	0.0364	3,970	5,450	
5/16"	0.0524	6300	7850	0.058	6,320	8,700	
3/8"	0.0775	9300	11600	0.0878	9,570	13,200	
7/16"	0.1063	12800	15900	0.1187	12,940	17,800	
1/2"	0.1419	17000	21300	0.1599	17,430	24,000	
9/16"	0.182	21800	27300	0.203	22,130	30,500	
5/8"	0.226	27100	33900	0.256	27,900	38,400	
3/4"	0.334	40100	50100	0.373	40,660	56,000	
7/8"	0.462	55400	69300	0.509	55,480	76,400	
1"	0.606	72700	90900	0.663	72,270	99,500	
1.1/8"	0.763	80100	114000	0.856	80,460	128,000	
1.1/4"	0.969	102000	145000	1.073	100,860	161,000	
1.3/8"	1.155	121000	173000	1.315	123,600	197,000	
1.1/2"	1.405	148000	211000	1.581	148,600	237,000	

Proof Loads and Tensile Stress for Based on: Tensile Strength = 120,000 lbf/in² min Imperial Hexagon Bolts to AS 2465 Grade 5

Yield Strength = 92,000 lbf/in² min Proof Load Stress = 85,000 lbf/in²

		UNC Threads		UNF Threads			
Dia	Tensile Stress Area in ²	Proof Load Ibf	Tensile Load Ibf min	Tensile Stress Area in²	Tensile Load Ibf min		
1/4"	0.0318	2,700	3,800	0.0364	3,100	4,350	
5/16"	0.0524	4,450	6,300	0.058	4,900	6,950	
3/8"	0.0775	6,600	9,300	0.0878	7,450	10,500	
7/16"	0.1063	9,050	12,800	0.1187	10,100	14,200	

Proof Loads and Tensile Stress for Imperial Hexagon Bolts to AS 2465 Grade 8

Based on: Based on:Tensile Strength= 150,000 lbf/in² min Yield Strength = 130,000 lbf/in² min Proof Load Stress = 120,000 lbf/in²

		UNC Threads		UNF Threads			
Dia	Tensile Stress Area in²	Proof Load Ibf	Tensile Load Ibf min	Tensile Stress Area in ²	Proof Load Ibf	Tensile Load Ibf min	
1/2"	0.1419	17,000	21,300	0.1599	19,200	24,000	
5/8"	0.2260	27,100	33,900	0.256	30,700	38,400	
3/4"	0.3340	40,100	50,100	0.373	44,800	56,000	
7/8"	0.4620	55,400	69,300	0.509	61,100	76,400	
1"	0.6060	72,700	90,900	0.663	79,600	99,400	
1 1/8"	0.7630	91,600	114,400	0.856	102,700	128,400	
1 1/4"	0.9690	116,300	145,400	1.073	128,800	161,000	
1 1/2"	1.4050	168,600	210,800	1.581	189,700	237,200	

Tapping and Drilling Chart

Including Pitch & Threads per inch

	B	SW	BS	SF	U	NC	U	NF	Me	tric	Isome	ric Pitch
Nominal Dia	Threads per Inch	Tapping Drill	Nominal Dia	Tapping Drill	Coarse	Fine						
3/16"	24	3.7mm	32	5/32"	24	3.9	32	4.1mm	M5	4.2mm	0.8	0.5
1/4"	20	5.1mm	26	5.4mm	20	13/64	28	7/32	M6	5.1mm	1.00	0.75
5/16"	18	6.5mm	22	6.8mm	18	6.6mm	24	7.0mm	M8	6.8mm	1.25	1
3/8"	16	5/16"	20	21/64	16	8.0mm	24	8.5mm	M10	8.6mm	1.5	1.25
7/16"	14	9.3mm	18	9.7mm	14	9.4mm	20	25/64	M12	10.4mm	1.75	1.25
1/2"	12	27/64	16	7/16"	13	10.0mm	20	29/64	M14	12.1mm	2	1.5
9/16"	12	31/64	16	1/2"	12	31/64	18	13.0	M16	14.0mm	2	1.5
5/8"	11	17/32	14	14mm	11	35/64	18	14.5mm	M18	15.5mm	2.5	1.5
3/4"	10	16.5mm	12	43/64	10	21/32	16	17.5mm	M20	17.5mm	2.5	1.5
7/8"	9	49/64	11	20mm	9	49/64	14	20.5mm	M22	19.5mm	2.5	1.5
<u>1"</u>	8	7/8"	10	29/32	8	57/64	12	59/64	M24	21.0mm	3	2
1.1/8"	7	63/64	9	1 1/64	7	63/64	12	1 3/64	M27	24.0mm	3	
1.1/4"	7	1 7/64	9	1 27/28	7	1 7/64	12	1 11/64	M30	36.5mm	3.5	
1.3/8"	6	1 13/64	8	1 1/4	6	1 7/32	12	33.0mm	M36	32.0mm	4	
1.1/2"	6	1 21/64	8	1 3/8	6	1 11/32	12	1 27/64	M39		4	
1.3/4"	5	1 35/64	7	1 39/64	5	1 9/16			M42		4.5	
2"	4.5	45mm	7	1 55/64	4.5	1 51/64			M48		5	

Dimension Properties

Domed Head Blind Rivets. All dimensions in mm

Rivet Dia	Size	Rivet Length	Fastens Material Between	Hole Dia	Domed Head Dia	Large Flange Head Dia	Head Thickness
2.4	3.2	5.8	0.5-3.2	2.5	4.7		0.8
	4.1	4.8	0.5-1.6		6.2	8	1
	4.2	6.4	1.6-3.2				
	4.3	8	3.2-4.8				
3.2	4.4	9.6	4.8-6.4	3.3			
	4.5	11.1	6.4-7.9				
	4.6	12.7	7.9-9.5				
	4.8	16.1	11.0-12.7				
	4.10	17.6	14.3-15.9				
4	5.1	5.5	0.5-1.6		7.9	10	1.3
	5.2	7.1	1.6-3.2	4.1			
	5.3	8.7	3.2-4.8				
	5.4	10.2	4.8-6.4				
	5.5	11.8	6.4-7.9				
	5.6	13.4	7.9-9.5				
	5.8	16.5	9.5-11.1				
	5.10	19.5	14.3-15.9				
4.8	6.1	6.4	0.5-1.6		9.5	14	1.5
	6.2	8.0	1.6-3.2				
	6.3	9.6	3.2-4.8	4.9			
	6.4	10.2	4.8-6.4				
	6.5	12.7	6.4-7.9				
	6.6	14.5	7.9-9.5				
	6.8	17.7	11.0-12.7				
	6.10	21.0	14.3-15.9				

Dimension Properties

Domed Head Blind Rivets. All dimensions in mm

Rivet Dia	Size	Rivet Length	Fastens Material Between	Hole Dia	Domed Head Dia	Large Flange Head Dia	Head Thickness
	6.12	24.1	15.9-17.6				
4.8	6.14	27.0	17.6-19.2	4.9	9.5	14	1.5
	6.16	30.0	19.8-26.2				
	6.20	37.0	26.2-32.8				

Mechanical Properties

Domed Head Blind Rivets

Rivet Dia	Aluminium		Steel		Stainless		Monel	
	Shear	Tensile	Shear	Tensile	Shear	Tensile	Shear	Tensile
3.2	760	980	1160	1380	1870	2360	1560	2000
4.0	1160	1560	1650	2090	2820	3650	2450	3110
4.8	1690	2220	2400	3020	4230	5340	2560	4450

Electrolytic Compatability

When two dissimilar metals or two similar metals which differ in chemical composition are in contact in the presence of moisture of any sort (e.g. damp or humid atmosphere) electrolytic corrosion can occur.

This is caused by the generation of a minute current which causes one of the metals to be eaten away.

Metals furthest apart in an electrolytic series will corrode most rapidly. The nomograph shows the possible extent of electrolytic corrosion for comparison purposes, as well as the differences in corrosion rates for different metal combinations.

A straight line is drawn between the two metals being considered; one metal selected from the left hand list and the other from the right hand list. The centre column number scale represents the degree of possible corrosion activity. A large number indicated high possibility of electrolytic activity, whilst a low number indicates a better combination for resisting electrolytic corrosion. The left and right hand material columns also indicate which metal will be protected and which will be attacked by corrosion.

EXAMPLE

Connecting inconel (passive) on the left scale, with Magnesium Alloys on the right scale, gives a value of 26; this is a high electrolytic risk situation, with the inconel being protected at the expense of the Magnesium Alloy. Connecting inconel (passive) with Copper/Nickel alloys gives a value of 4; this is obviously a better corrosion resisting combination.

A greater corrosion rate than indicated can result if a small Anode is in contact with a large Cathode since the electrical current density is increased at the Anode.

Where it is not possible to use joint and rivet materials that will resist corrosion then some other means should be found such as painting or plating of the rivets prior to or after installation. It may be necessary to apply additional protection - such as painting of the hole prior to riveting - if the joint is likely to be exposed to particularly corrosive conditions.

Electrolytic Compatability

The above information is provided for guidance only and should not be used when working to stringent specifications.